

ESA CAPACITY study

Composition of the Atmosphere: Progress to Applications in the User CommunITY

Hennie Kelder

KNMI University of Technology, Eindhoven

ESA CAPACITY study

Operational atmospheric chemistry monitoring

User requirements
Contributions of current and planned missions
Mission concepts and instrument requirements

Time frame: 2010-2020

Capacity study

Study consortium

Prime: KNMI (H. Kelder, M. van Weele, A. Goede)

Core team: Rutherford-Appleton Lab (B. Kerridge, J. Reburn)

Univ. Leicester (P. Monks, J. Remedios)

Univ. Bremen (H. Bovensmann)

EADS-Astrium (R. Mager)

Alcatel Space (H. Sassier)

Consultants: Requirements – WMO, JRC, 5 weather and environmental agencies,

Eurocontrol, 11 research institutes and universities

Space instrumentation – 10 research institutes and universities,

1 company

Ground instrumentation – 1 research institute

ESA Joerg Langen

Sources of user and observational requirements

- IGOS-IGACO Theme report
- EU GMES-GATO report
- EU FP projects, e.g. Create-Daedalus, Evergreen
- EUMETSAT user consultation in the frame of MTG
- Environment and climate protection protocols, directives etc. (EU, international)
- GCOS implementation plan, WCRP-SPARC long-term observation requirements
- GMES service element PROMOTE
- ESA studies on CO₂ monitoring
- ESA study on atmospheric chemistry observation requirements (research)
- CAPACITY workshop Jan. '04 and final presentation June '05

Operational monitoring air quality

OMI NO2 Tropospheric Column Density 29-AUG-2005

ئد

Climate monitoring

SCIAMACHY 2003/2004 methane concentration

Operational monitoring of the ozone layer

Ozone hole, vortex breakup, GOME, September 2002

Capacity study

Environmental themes, data usage, applications

Environmental Theme	Ozone Layer & Surface UV radiation	Air Quality	Climate
Data usage			
Protocols	UNEP Vienna Convention; Montreal and subs. Protocols CFC emission verification Stratospheric ozone, halogen and surface UV distribution and trend monitoring	UN/ECE CLRTAP; EMEP / Göteborg Protocol; EC directives EAP / CAFE AQ emission verification AQ distribution and trend monitoring	UNFCCC Rio Convention; Kyoto Protocol; Climate policy EU GHG and aerosol emission verification GHG/aerosol distribution and trend monitoring
Services	Stratospheric composition and surface UV forecast NWP assimilation and (re-) analysis	Local Air Quality (BL); Health warnings (BL) Chemical Weather (BL/FT) Aviation routing (UT)	NWP assimilation and (re-) analysis Climate monitoring Climate model validation
Assessment (lower priority for operational mission)	Long-term global data records WMO Ozone assessments Stratospheric chemistry and transport processes; UV radiative transport processes Halogen source attribution UV health & biological effects	Long-term global, regional, and local data records UNEP, EEA assessments Regional & local boundary layer AQ processes; Tropospheric chemistry and long-range transport processes AQ source attribution AQ Health and safety effects	Long-term global data records IPCC assessments Earth System, climate, rad. forcing processes; UTLS transport-chemistry processes Forcing agents source attribution Socio-economic climate effects

Measurement strategy - example: climate protocol monitoring

Role of Satellite Measurements

- Concentration monitoring for inverse modeling of CH₄, CO₂, CO and NO₂ emissions
- Global concentration distributions of the mentioned gases, O₃ and aerosols

Role of Surface network

- Greenhouse gases trend monitoring (CO₂, CH₄, N₂O, SF₆, CF₄, HFCs)
- Weekly surface concentrations and total columns from a representative network.
- Validation of satellite measurements
- Concentration monitoring for inverse modeling of CH₄, CO₂, CO and NO₂ emissions
- Tropospheric O₃: sondes, lidar and surface data;
- Tropospheric aerosol optical depth and aerosol absorption optical depth
- Trend monitoring for ozone depleting substances with climate forcing: (H)CFCs.

Auxiliary data

- Meteorology from NWP centers including surface data
- Emission inventories and estimates on sinks

Mission concept for air quality - system options

Driving requirements (monitoring, forecast):

Revisit time

0.5 - 2 h

Spatial resolution 5 - 20km

System options:

A 1 geostationary satellite to satisfy spatial-temporal sampling requirements over Europe, and

1 LEO satellite in sun-synchronous orbit for global pollution transport (Convention on long-range transport of air pollutants, medium-range forecast)

- B a constellation of ~3 satellites in inclined LEO to satisfy spatial-temporal sampling requirements globally at mid-latitudes, with reduced sampling at low latitudes
- C 1 satellite in sun-synchronous LEO, with local time defined to complement Metop and NPOESS diurnal sampling (afternoon orbit)

Air quality:

LEO (MEO) constellation as a replacement for GEO?

- GEO mission has best spatial-temporal sampling over Europe
- GEO mission only complete with additional LEO platform covering hemispheric pollution transport (CLRTAP convention)
- GEO mission fulfils temporal sampling requirement only over Europe air quality services not available for most polluted regions (e.g. Asia)
- LEO/MEO constellation (~3 satellites) provides quasi-global coverage with good temporal sampling
- LEO/MEO constellation redundancy may be easier (loss of one satellite leads to degraded mission instead of complete failure; identical satellites; cheaper launch)

How to reach 2h revisit time at mid-latitudes with LEO/MEO constellation?

1. Increase swath width by elevating orbit altitude

- 2h revisit time with 3 sun-synchronous satellites implies 3000 km orbit, at top of proton radiation level
- 3.5h revisit time at latitudes > 30° realistic with 3 sun-synchronous satellites, 900km orbit.
- requirement not fulfilled.

2. Use inclined orbit (non sun-synchronous)

- orbit more efficient at inhabited latitude ranges
- polar regions not covered
- 3 satellites at 900km provide 1.7 hours revisit time at mid-latitudes (~35°... 65°) and reduced sampling at lower latitudes.
- possible solution. High orbit desirable.

3 satellites at 900km, 125° inclination (two consecutive orbits)

Recommendation 1

Implement 1 LEO satellite with UV-VIS-SWIR payload for global air quality and climate protocol monitoring as soon as possible

- air quality applications develop quickly, SCIAMACHY and OMI/Aura demonstrating space contribution(eg NO₂), continuity issue arising
- climate protocol monitoring high on the agenda continuity of SCIAMACHY CH₄ measurements, aerosol
- technology well demonstrated in space (GOME, SCIAMACHY, OMI; also TOMS, SBUV) no technology specific failures
- 1 LEO platform common to all air quality system options; orbit-specific aspects need separate consideration

Recommendation 2

Perform trade-off between GEO+LEO and LEO constellation in inclined orbit, and implement complete air quality & climate protocol monitoring mission

Trade-off involves

- Level 2 error budgets on individual soundings
- spatial-temporal sampling under consideration of cloud
- end-user performance analysis
- maturity, cost and risk

Implementation:

launch of either GEO or remaining two inclined LEO platforms

Recommendation 3

Consolidate choice and requirements of instrument for UTLS mission for climate chemistry coupling and assessment applications, and implement the mission

- monitoring of ozone, climate and stratosphere-troposphere exchange
- NRT applications now in demonstration phase (MIPAS, Aura-MLS), new hypotheses on stratospheric precursors of weather patterns
- support to tropospheric missions via vertical resolution
- choice of instrument type (mm-wave or mid-IR limb-sounder) depends on priorities of applications
- prototype instrument specifications exist need to be tailored towards operational applications

Follow-up in Europe EUMETSAT:

Operational monitoring atmospheric composition in post-EPS time frame 2015-2025

Based on user requirements defined in CAPACITY Workshop with users March/April 2006

EU/ESA GMES, Sentinels 4/5 atmosphere ongoing